Formation of actin-ADF/cofilin rods transiently retards decline of mitochondrial potential and ATP in stressed neurons.
نویسندگان
چکیده
When neurons in culture are transiently stressed by inhibition of ATP synthesis, they rapidly form within their neurites rodlike actin inclusions that disappear when the insult is removed. Oxidative stress, excitotoxic insults, and amyloid beta-peptide oligomers also induce rods. Immunostaining of neurites indicates that these rods also contain the majority of the actin filament dynamizing proteins, actin-depolymerizing factor (ADF) and cofilin (AC). If the rods reappear within 24 h after the stress is removed, the neurite degenerates distal to the rod but with no increase in neuronal death. Here, rods were generated in cultured rat E18 hippocampal cells by overexpression of a green fluorescent protein chimera of AC. Surprisingly, we have found that, for a short period (approximately 60 min) immediately after initial rod formation, the loss of mitochondrial membrane potential (Delta Psi(m)) and ATP in neurites with rods is slower than in neurites without them. The Delta Psi(m) was monitored with the fluorescent dye tetramethylrhodamine methyl ester, and ATP was monitored with the fluorescent ion indicator mag-fura 2. Actin in rods is less dynamic than is filamentous actin in other cytoskeletal structures. Because Delta Psi(m) depends on cellular ATP and because ATP hydrolysis associated with actin filament turnover is responsible for a large fraction of neuronal energy consumption (approximately 50%), the formation of rods transiently protects neurites by slowing filament turnover and its associated ATP hydrolysis.
منابع مشابه
Activated actin-depolymerizing factor/cofilin sequesters phosphorylated microtubule-associated protein during the assembly of alzheimer-like neuritic cytoskeletal striations.
In Alzheimer's disease (AD), rod-like cofilin aggregates (cofilin-actin rods) and thread-like inclusions containing phosphorylated microtubule-associated protein (pMAP) tau form in the brain (neuropil threads), and the extent of their presence correlates with cognitive decline and disease progression. The assembly mechanism of these respective pathological lesions and the relationship between t...
متن کاملADF/cofilin mediates actin cytoskeletal alterations in LLC-PK cells during ATP depletion.
Ischemic injury induces actin cytoskeleton disruption and aggregation, but mechanisms affecting these changes remain unclear. To determine the role of actin-depolymerizing factor (ADF)/ cofilin participation in ischemic-induced actin cytoskeletal breakdown, we utilized porcine kidney cultured cells, LLC-PK(A4.8), and adenovirus containing wild-type (wt), constitutively active, and inactive Xeno...
متن کاملIncorporation of cofilin into rods depends on disulfide intermolecular bonds: implications for actin regulation and neurodegenerative disease.
Rod-shaped aggregates ("rods"), containing equimolar actin and the actin dynamizing protein cofilin, appear in neurons following a wide variety of potentially oxidative stress: simulated microischemia, cofilin overexpression, and exposure to peroxide, excess glutamate, or the dimer/trimer forms of amyloid-β peptide (Aβd/t), the most synaptotoxic Aβ species. These rods are initially reversible a...
متن کاملA Genetically Encoded Reporter for Real-Time Imaging of Cofilin-Actin Rods in Living Neurons
Filament bundles (rods) of cofilin and actin (1:1) form in neurites of stressed neurons where they inhibit synaptic function. Live-cell imaging of rod formation is hampered by the fact that overexpression of a chimera of wild type cofilin with a fluorescent protein causes formation of spontaneous and persistent rods, which is exacerbated by the photostress of imaging. The study of rod induction...
متن کاملCofilin mediates ATP depletion-induced endothelial cell actin alterations.
Ischemia and sepsis lead to endothelial cell damage, resulting in compromised microvascular flow in many organs. Much remains to be determined regarding the intracellular structural events that lead to endothelial cell dysfunction. To investigate potential actin cytoskeletal-related mechanisms, ATP depletion was induced in mouse pancreatic microvascular endothelial cells (MS1). Fluorescent imag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 291 5 شماره
صفحات -
تاریخ انتشار 2006